Wednesday, September 10, 2008

More information on Hydrocephalus

Reference: "Hydrocephalus" by Eugenia-Daniela Hord, MD, Instructor, Departments of Anesthesia and Neurology, Massachusetts General Hospital Pain Center, Harvard Medical School

Pathophysiology

Normal CSF production is 0.20-0.35 mL/min; a majority is produced by the choroid plexus, which is located within the ventricular system, mainly the lateral and fourth ventricles. The capacity of the lateral and third ventricles in a healthy person is 20 mL. Total volume of CSF in an adult is 120 mL.

Normal route of CSF from production to clearance is the following: From the choroid plexus, the CSF flows to the lateral ventricle, then to the interventricular foramen of Monro, the third ventricle, the cerebral aqueduct of Sylvius, the fourth ventricle, the 2 lateral foramina of Luschka and 1 medial foramen of Magendie, the subarachnoid space, the arachnoid granulations, the dural sinus, and finally into the venous drainage.

ICP rises if production of CSF exceeds absorption. This occurs if CSF is overproduced, resistance to CSF flow is increased, or venous sinus pressure is increased. CSF production falls as ICP rises. Compensation may occur through transventricular absorption of CSF and also by absorption along nerve root sleeves. Temporal and frontal horns dilate first, often asymmetrically. This may result in elevation of the corpus callosum, stretching or perforation of the septum pellucidum, thinning of the cerebral mantle, or enlargement of the third ventricle downward into the pituitary fossa (which may cause pituitary dysfunction).

The mechanism of NPH has not been elucidated completely. Current theories include increased resistance to flow of CSF within the ventricular system or subarachnoid villi; intermittently elevated CSF pressure, usually at night; and ventricular enlargement caused by an initial rise in CSF pressure; the enlargement is maintained despite normal pressure because of the Laplace law. Although pressure is normal, the enlarged ventricular area reflects increased force on the ventricular wall.

Frequency

United States

Incidence of congenital hydrocephalus is 3 per 1,000 live births, while the incidence of acquired hydrocephalus is not known exactly.

International

Incidence of acquired hydrocephalus is unknown. About 100,000 shunts are implanted each year in the developed countries, but little information is available for other countries.

Mortality/Morbidity

In untreated hydrocephalus, death may occur by tonsillar herniation secondary to raised ICP with compression of the brain stem and subsequent respiratory arrest.

  • Shunt dependence occurs in 75% of all cases of treated hydrocephalus and in 50% of children with communicating hydrocephalus.
  • Patients are hospitalized for scheduled shunt revisions or for treatment of shunt complications or shunt failure.
  • Poor development of cognitive function in infants and children, or loss of cognitive function in adults, can complicate untreated hydrocephalus. It may persist after treatment.
  • Visual loss can complicate untreated hydrocephalus and may persist after treatment.

Sex

Generally, incidence is equal in males and females. The exception is Bickers-Adams syndrome, an X-linked hydrocephalus transmitted by females and manifested in males. NPH has a slight male preponderance.

Age

Incidence of human hydrocephalus presents a bimodal age curve. One peak occurs in infancy and is related to the various forms of congenital malformations. Another peak occurs in adulthood, mostly resulting from NPH. Adult hydrocephalus represents approximately 40% of total cases of hydrocephalus.

No comments: