Monday, June 8, 2009

What You Need To Know About Brain Cancer

Author: Dick Aronson

Malignant brain tumors occur in about 4.5 people per 100,000 population, they may occur at any age but brain cancer is the leading cause of cancer-related death in patients younger than age 35. In adults, incidence is generally highest between ages 40 to 60.

There are two main types of brain cancer. Primary brain cancer starts in the brain. Metastatic brain cancer starts somewhere else in the body and moves to the brain. The most common tumor types in adults are gliomas and meningiomas. In children, incidence is generally highest before age 1 and again between ages 2 and 12. The most common types of brain tumour in children are astrocytomas, medulloblastomas, ependymomas and brain stem gliomas.



CAUSES OF BRAIN CANCER

What causes brain cancer is not exactly known but there has recently been a great deal of speculation on the role of cell phone radiation in the development of brain cancer. In fact, while studies generally have shown no link between cell phones and brain cancer, there is some conflicting scientific evidence that may be worth additional study, according to the FDA.



More accepted risk factors for brain cancer include; exposure to vinyl chloride and individuals with risk factors such as having a job in an oil refinery, as a chemist, embalmer, or rubber industry worker show higher rates of brain cancer. Other risk factors such as smoking, radiation exposure, and viral infection (HIV) have been suggested but not proven to cause brain cancer. Patients with a history of melanoma, lung, breast, colon, or kidney cancer are at risk for secondary brain cancer.



SIGNS AND SYMPTOMS OF BRAIN CANCER

Onset of symptoms is usually insidious and brain tumors are often misdiagnosed. Brain Cancers cause central nervous system changes by invading and destroying tissues and by secondary effects such as pressure on the brain. Symptoms vary but in general, brain cancer symptoms include: Abnormal pulse and breathing rates, deep, dull headaches that recur often and persist without relief for long periods of time, difficulty walking or speaking, dizziness, eyesight problems including double vision, seizures, vomiting and at the late stages of the disorder dramatic changes in blood pressure may occur. Although headaches are often a symptom of brain cancer, it is important to remember that most headaches are due to less serious conditions such as migraine or tension, not cancer.



DIAGNOSIS OF BRAIN CANCERS

In most cases a definitive diagnosis is made by a tissue biopsy. Other diagnostic tools include; patient history, a neurologic assessment, skull x-rays, a brain scan, CT scan, MRI, a lumbar puncture and cerebral angiography. Meningiomas, arising from the covering around the brain or spinal cord, account for about 20% of brain cancers and are generally more benign.



TREATMENT OF BRAIN TUMORS

How to treat brain tumors depends on the age of the patient, the stage of the disease, the type and location of the tumor, and whether the cancer is a primary tumor or brain metastases. Brain cancer and brain tumors are somewhat unique because of the blood

brain barrier, which severely restricts the types of substances in the bloodstream that are allowed by the body into the brain and makes drug treatment extremely difficult. Because of this more and more research is being undertaken in delivering medication by means of nanoparticles, amongst the properties of nanoparticles that make them ideal candidates for recognizing and treating brain cancer, their ability to deliver a wide variety of payloads across the blood-brain barrier is perhaps the most important.



Brain cancers location and ability to spread quickly makes treatment with surgery or radiation like fighting an enemy hiding out among minefields and caves, and explains why the term brain cancer is all too often associated with the word inoperable.

Brain cancer survival statistics for the deadliest of tumors such as gliomas have not improved significantly over the past two decades and the clinical armamentarium is, to a large extent, still dependent on surgery and radiation therapy, treatments known to leave survivors with devastating cognitive deficits. Gamma knife surgery is a radiosurgery technique used to treat people with brain cancer and other neurological disorders



The most deadly form of brain cancer may be treatable with a vaccine that uses proteins. Unlike measles or mumps vaccines, which are meant to prevent disease, the brain cancer vaccine turns on the patient's own immune system so it will help kill the tumor. When the vaccine is injected, it stimulates the immune system to kill off brain cancer cells and prevent the regrowth of tumors that have already been treated.



PROGNOSIS

The chances of surviving for a person with a brain tumor: Prognosis greatly depends on all of the following: type of tumor extent of the disease size and location of the tumor presence or absence of metastasis the tumor's response to therapy, age, overall health, and medical history, tolerance of specific medications, procedures, or therapies. Metastatic brain cancer indicates advanced disease and has a poor prognosis. Unfortunately, the most common form of primary brain cancer, glioblastoma, is also the most aggressive and lethal but teratomas and other germ cell tumors although they have the capacity to grow very large may have a more favorable prognosis.

About the Author:

Dick Aronson has a background of over 35 years in various facets of the Healthcare industry. He now runs a number of informative health sites; Go" target="_blank">www.healthinnovationsonline.com/">Go to Health Innovations , Go to Cancer Information Online and Go to Brain Cancer Site

Article Source: ArticlesBase.com - What You Need To Know About Brain Cancer

Friday, June 5, 2009

The Brain More Than a Computer

Author: Ruel Hinaloc

ANOTHER superb organ is the human brain. It, together with the rest of the nervous system, is often compared to man-made computers. Of course, computers are constructed by humans and operate according to step-by-step instructions predetermined by human programmers. Yet, many people believe that no intelligence was responsible for “wiring” and “programming” the human brain.


Although extremely fast, computers handle only one piece of information at a time, whereas the human nervous system processes millions of pieces of information simultaneously. For example, during a stroll in the springtime, you can enjoy the beautiful scenery, listen to the song of birds, and smell the flowers. All these pleasant sensations are transmitted simultaneously to your brain. At the same time, streams of information flow from the sense receptors in your limbs, informing your brain of the moment-to-moment position of each leg and the state of each muscle. Obstacles in the footpath ahead are noticed by your eyes. On the basis of all this information, your brain ensures that each step is taken smoothly.


Meanwhile, the lower regions of your brain govern your heartbeat, breathing, and other vital functions. But your brain handles much more. As you walk, you can sing, talk, compare present scenes with past scenes, or make plans for the future.


“The brain,” concludes The Body Book, “is much more than a computer. No computer can decide that it is bored or wasting its talents and should embark on a new way of life. The computer cannot drastically alter its own program; before it sets out in a new direction, a person with a brain must reprogram it. . . . A computer cannot relax, or daydream, or laugh. It cannot become inspired or creative. It cannot experience consciousness or perceive meaning. It cannot fall in love.”


The Most Wonderful Brain of All


Animals such as elephants and some large sea creatures have brains larger than that of a human, but in proportion to body size, the human brain is the largest of all. “The gorilla,” explains Richard Thompson in his book The Brain, “is physically larger than a human yet has a brain only one-fourth the size of the human one.”


The number of different pathways between neurons (nerve cells) in the human brain is astronomical. This is because neurons have so many interconnections; one neuron may connect up with over one hundred thousand others. “The figure of possible connections within our modern brain is as good as infinite,” states Anthony Smith in his book The Mind. It is larger “than the total number of atomic particles that make up the known universe,” says neuroscientist Thompson.


But there is something even more remarkable. It is the way this vast network of neurons has been connected that enables humans to think, speak, listen, read, and write. And these things can be done in two or more languages. “Language is the crucial difference between humans and animals,” states Karl Sabbagh in his book The Living Body. Animal communication is simple by comparison. The difference, admits evolutionist Sabbagh, “is not just a trivial improvement on other animals’ abilities to make noises it is the fundamental property that makes humans human, and it is reflected in major differences in brain structure.”


The marvelous structure of the human brain has motivated many to make better use of its potential by becoming skilled at some trade, learning to play a musical instrument, mastering another language, or developing whatever talents add joy to life. “When you learn a new skill,” write Drs. R. and B. Bruun in their book The Human Body, “you are training your neurons to connect in a new way. . . . The more you use your brain, the more efficient it will become.”


Made by Whom?


Could something so highly organized and orderly like the hand, the eye, and the brain have come about by chance? If man is credited with inventing tools, computers, and photographic film, surely someone should be honored for making the more versatile hand, eye, and brain. “O Jehovah,” the Bible psalmist said, “I shall laud you because in a fear-inspiring way I am wonderfully made. Your works are wonderful, as my soul is very well aware.” Psalm 139:1, 14.


Many wonderful functions of the human body take place without our conscious effort. Future post of this blog will discuss some of these amazing mechanisms, and also whether aging, sickness, and death can be conquered, so that we can enjoy life forever!



Your Wonderful Neurons


A NEURON is a nerve cell with all its processes. Your nervous system contains many types of neurons, which total about 500 billion. Some are sense receptors that send information from different parts of the body to your brain. Neurons in the higher region of your brain function like a video recorder. They can permanently store information that comes from your eyes and ears. Years later you can “play back” these sights and sounds, along with thoughts and other sensations that no man-made machine can record.


Human memory is still a mystery. It has something to do with the way neurons connect. “The average brain cell,” explains Karl Sabbagh in his book The Living Body, “links up with about 60,000 others; indeed some cells have links with up to a quarter of a million others. . . . The human brain could hold at least 1000 times as much information in the pathways connecting its nerve cells as is contained in the largest encyclopedia say 20 or 30 big volumes.”


But how does one neuron pass information to another? Creatures with a simple nervous system have many nerve cells that are joined together. In such a case, an electrical impulse crosses the bridge from one neuron to the next. The crossing is called an electrical synapse. It is fast and simple.


Strange as it may seem, most neurons in the human body pass messages via a chemical synapse. This slower, more complex method can be illustrated by a train that reaches a river without a bridge and has to be ferried across. When an electrical impulse reaches a chemical synapse, it has to stop because a gap separates the two neurons. Here the signal is “ferried” across by the transfer of chemicals. Why this complex electro-chemical method of passing nerve impulses?


Scientists see many advantages in the chemical synapse. It ensures that messages pass one way. Also, it is described as plastic because its function or structure can easily change. Here signals can be modified. Through use, some chemical synapses get stronger while others disappear because of disuse. “Learning and memory could not develop in a nervous system that had only electrical synapses,” states Richard Thompson in his book The Brain.


Science writer Smith explains in his book The Mind: “Neurons do not just fire and not fire . . . they must be capable of passing on much more subtle information than yes or no. They are not just hammers hitting the next nail, either more frequently or less so. They are, to complete this analogy, a carpenter’s kit, with screwdrivers, pliers, pincers, mallets and hammers. . . . Each neural impulse is transformed along the way, and nowhere else than at the synapses.”


The chemical synapse has a further advantage. It takes less space than an electrical synapse, which explains why the human brain has so many synapses. The journal Science gives a figure of 100,000,000,000,000 equivalent to the number of stars in hundreds of Milky Way galaxies. “We are what we are,” adds neuroscientist Thompson, “because our brains are basically chemical machines rather than electrical ones.”



Why Your Brain Needs So Much Blood


BEFORE diving into a swimming pool, perhaps you dip your toes into the water. If the water is cold, tiny cold receptors in your skin quickly respond. In less than a second, your brain registers the temperature. Pain receptors can transmit information even more quickly. Some nerve impulses reach speeds of 225 miles [360 km] per hour comparable to running the length of a football field in one second.


How, though, does the brain work out the intensity of a sensation? One way is by the frequency with which a neuron fires; some fire a thousand or more times a second. The intense activity that takes place among neurons in the brain would be impossible were it not for the work of pumps and powerhouses.


Each time a neuron fires, atoms with an electrical charge pour into the cell. If these sodium ions, as they are called, are allowed to accumulate, the neuron will gradually lose its ability to fire. How is the problem solved? “Every neuron,” explains science writer Anthony Smith in his book The Mind, “contains about a million pumps each one is a slight bump on the cell membrane and every pump can swap about 200 sodium ions for 130 potassium ions every second.” Even when neurons rest, the pumps keep working. Why? To counteract the effect of sodium ions that leak into the cell and potassium ions that leak out.


The activity of the pumps requires a constant supply of energy. The energy comes from tiny mitochondria, or “powerhouses,” scattered inside each cell. To produce energy, each powerhouse needs oxygen and glucose supplied by the blood. No wonder your brain needs so much blood. “Although it constitutes only about 2 percent of total body weight,” explains Richard Thompson in his book The Brain, it “receives 16 percent of the blood supply . . . Brain tissue receives 10 times as much blood as muscle tissue.”


The next time you feel the temperature of water, be thankful for the trillions of pumps and powerhouses in your brain. And remember that all this activity is possible because of oxygen and glucose transported by your blood.


The human brain processes millions of bits of information simultaneously. As you move, sense receptors in your limbs inform your brain of the moment-to-moment position of each arm and the state of each muscle


The brain is far more complex and versatile than a computer

About the Author:

Did you find this article useful? For more useful tips, hints, points to ponder and keep in mind, do please browse for more information at our websites. http://www.marvelsofcreation.com and http://www.adsflick.com

Article Source: ArticlesBase.com - The Brain More Than a Computer